On the C-determinantal range for special classes of matrices

نویسندگان

  • Alexander Guterman
  • Rute Lemos
  • Graça Soares
چکیده

Let A and C be square complex matrices of size n, the C-determinantal range of A is the subset of the complex plane {det (A− UCU∗) : UU∗ = In}. If A,C are both Hermitian matrices, then by a result of M. Fiedler [11] this set is a real line segment. In this paper we study this set for the case when C is a Hermitian matrix. Our purpose is to revisit and improve two well-known results on this topic. The first result is due to C.K. Li concerning the C-numerical range of a Hermitian matrix, see Condition 5.1 (a) in [20]. The second one is due to C.-K. Li, Y.-T. Poon and N.-S. Sze about necessary and sufficient conditions for the C-determinantal range of A to be a subset of the line, see [21, Theorem 3.3].

منابع مشابه

PERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES

We give further results for Perron-Frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. We indicate two techniques for establishing the main theorem ofPerron and Frobenius on the numerical range. In the rst method, we use acorresponding version of Wielandt's lemma. The second technique involves graphtheory.

متن کامل

On Some Special Classes of Sonnenschein Matrices

‎In this paper we consider the special classes of Sonnenschein matrices‎, ‎namely the Karamata matrices $K[alpha,beta]=left(a_{n,k}right)$ with the entries‎ ‎[{a_{n,k}} = sumlimits_{v = 0}^k {left( begin{array}{l}‎ ‎n\‎ ‎v‎ ‎end{array} right){{left( {1‎ - ‎alpha‎ - ‎beta } right)}^v}{alpha ^{n‎ - ‎v}}left( begin{array}{l}‎ ‎n‎ + ‎k‎ - ‎v‎ - ‎1\‎ ‎,,,,,,,,,,k...

متن کامل

Gröbner geometry of Schubert polynomials

Schubert polynomials, which a priori represent cohomology classes of Schubert varieties in the flag manifold, also represent torus-equivariant cohomology classes of certain determinantal loci in the vector space of n×n complex matrices. Our central result is that the minors defining these “matrix Schubert varieties” are Gröbner bases for any antidiagonal term order. The Schubert polynomials are...

متن کامل

Fe b 20 02 Gröbner geometry of Schubert polynomials

Schubert polynomials, which a priori represent cohomology classes of Schubert varieties in the flag manifold, also represent torus-equivariant cohomology classes of certain determinantal loci in the vector space of n×n complex matrices. Our central result is that the minors defining these “matrix Schubert varieties” are Gröbner bases for any antidiagonal term order. The Schubert polynomials are...

متن کامل

A New Method for Computing Determinants By Reducing The Orders By Two

In this paper we will present a new method to calculate determinants of square matrices. The method is based on the Chio-Dodgson's condensation formula and our approach automatically affects in reducing the order of determinants by two. Also, using the Chio's condensation method we present an inductive proof of Dodgson's determinantal identity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 275  شماره 

صفحات  -

تاریخ انتشار 2016